Two-Stage Static/Dynamic Environment Modeling Using Voxel Representation

Alireza Asvadi, Paulo Peixoto and Urbano Nunes

Institute of Systems and Robotics,
Department of Electrical Engineering and Computers,
University of Coimbra

Lisbon
November 2015
Presentation Overview:

- Introduction
- Proposed approach
- Experimental results
- Future works
Leading causes of death worldwide:

1. Ischemic heart disease
2. Stroke
3, 4 & 5. COPD, Lower respiratory infections and Lung cancer
6. HIV/AIDS
7. Diarrheal diseases
8. Road injury
9. Diabetes mellitus
Driver-, Vehicle-, and Environment-Related Critical Reasons

<table>
<thead>
<tr>
<th>Critical Reason Attributed to</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drivers</td>
<td>94%</td>
</tr>
<tr>
<td>Vehicles</td>
<td>2%</td>
</tr>
<tr>
<td>Environment</td>
<td>2%</td>
</tr>
<tr>
<td>Unknown Critical Reasons</td>
<td>2%</td>
</tr>
</tbody>
</table>

Shift the paradigm of the transportation system, in which the task of a driver changes from driving to supervising the vehicle.

Cars must get smarter and more capable
An intelligent vehicle's modules in terms of inputs and outputs

Here, our focus is on:

Environment representation and identifying static and dynamic part of sensor data.
Proposed perception system in terms of modules, inputs and outputs

Sensors
- Velodyne LIDAR
- INS (GPS/IMU)

Low-Level Perception Module
- Ground Modeling
- Voxelization
- Ground Piecewise Plane Modeling and Removing Ground Points
- Stage 1: Subtraction
- Stage 2: Histogram
- Modeling the Static/Dynamic Parts of the Environment

To Higher-Level Perception/Planning/Control Modules

Sensor data:
- Perception measurements
- Vehicle movement (localization) measurements

Sensed information:
- Piecewise plane model of ground
- Voxel model of static part of the environment
- Voxel model of dynamic part of the environment (motion grid)
Point Clouds Integration and Ground Estimation

Point Clouds Integration

Point cloud data → Point cloud of the frame n

Localization data → Transformed point cloud of the frame n - 1

... → Transformed point cloud of the frame n - m

Integrated point clouds

Piecewise ground estimation using stripes
Voxelization

Building voxel representation from point clouds

Point cloud → Ground parameters → Remove ground points → Voxelize → Voxel representation

A voxel grid discretizes the 3D space into small grid elements called voxel.

A voxel contains information about the space it’s representing.

Only non-empty voxels are indexed.
A piecewise plane fitting method for ground estimation and ground / on-ground objects separation

Notice the curvature of the ground that makes it impossible to model using only one surface.
Voxel-based Static/Dynamic Modeling of the Environment

First stage: provides a rough estimation of static/dynamic voxels by using a simple subtraction mechanism.

Second stage: further refines the results using a discriminative analysis on the 2D histograms computed from the output of the first stage.
Stage 1: Rough approximation of static / dynamic cells

Removing dynamic voxels

Static and dynamic voxels outputted from stage 1
Stage 2: Discriminative analysis of static / dynamic cells

The process of computing the binary mask of the dynamic voxels

1. Building 2D histogram of the static cells in the X-Y plane
2. Computing the log-likelihood ratio of histograms using equation (1)
3. Multiplying by the static part of the environment
4.得到dynamic part of the environment

2D histogram of the static cells
log-likelihood ratio of histograms
2D histogram of the dynamic cells
The log-likelihood ratio of 2D histograms of the approximated dynamic and static cells that are employed to determine the binary mask for the dynamic voxels.

\[L_i = \log \frac{\max \{ h_d(i), \delta \}}{\max \{ h_s(i), \delta \}} \]
Static and dynamic voxels outputted from stage 2
Static/dynamic environment modeling using voxel representation
Computational analysis of the proposed method

Increasing the number of the integrated scans:
+ Stronger static/dynamic model
- Additional computational cost

Increasing the size of the voxels:
- Only non-empty voxels are indexed and processed
- In average nearly 1% non-empty voxels

Implemented in MATLAB

The proposed method works at 1.05fps
Future Works

- Improvement of the current work: make the system more robust, less dependent on thresholds assigned empirically, and to assess its performance in real-time applications.

- Classification of moving objects.

- Static objects should be taken into account. Object detection and classification from static parts of the environment.
This work has been supported by the FCT project “AMS-HMI2012 - RECI/EEIAUT/0181/2012” and project “ProjB-Diagnosis and Assisted Mobility - Centro-07-ST24-FEDER-002028” with FEDER funding, programs QREN and COMPETE. This research is being developed at the Institute of Systems and Robotics - University of Coimbra (ISR-UC).
Thank you for your attention

Questions?